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Who am |?

« Cheng Guo (c5guo@ucsd.edu)

1st year MS - dedicated to pursue PhD
Interested in Causality & NLP

« Class Project on Backdoor attacks

« Previous Research
My Goal:

« Benchmark ->Test on LLMs -> Fine-Tuning for better performance -> (?)

Build a Causality-aware model Architecture or Encoding methods

UC San Diego
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Literature Review on Current Benchmarks

« Ladder of Causation (pearl & Mackenzie, 2018)
« Correlation, Intervention, Counterfactuals

« TimeTravel (Qinetal., 2019)
« Tuebingen Cause-Effect Pairs (Mooij et al., 2015)
 IntuitivePhysics (zecevi¢ et al., 2023)
« BIG-bench (Srivastava et al., 2023)
o e-CARE (Gaoetal, 2023)
e LogiQA (Liuetal,2020)
« LOGIC yinetal,2022)
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Existed Benchmark - Corr2Cause uinetal, 2023

input label num_variables template

string - Ilengths inté4d inté4 string

[ | -
312-1.21K 36.4% 0 81.5% 4 0.3% child 16.7%
Premise: Suppose there is a closed system of 4 0 4 child

variables, A, B, C and D. All the statistical
relations among these 4 variables are as
follows: A correlates with C. A correlates with
D. B correlates with C. B correlates with D. C
correlates with D. However, A is independent of
B. A and D are independent given B and C. A and
D are independent given C. B and D are
independent given A and C. B and D are
independent given C. Hypothesis: C directly
causes B.
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prompt label
string string
Imagine a self-contained, hypothetical yes

world with only the following
conditions, and without any
unmentioned factors or causal
relationships: Husband has a direct
effect on wife and alarm clock. Wife
has a direct effect on alarm clock.
For husbands that don't set the alarm
and wives that don't set the alarm,
the probability of ringing alarm is
8%. For husbands that don't set the
alarm and wives that set the alarm,
the probability of ringing alarm is
54%. For husbands that set the alarm
and wives that don't set the alarm,
the probability of ringing alarm is
41%. For husbands that set the alarm
and wives that set the alarm, the
probability of ringing alarm is 86%.
For husbands that don't set the alarm,
the probability of alarm set by wife
is 74%. For husbands that set the
alarm, the probability of alarm set by
wife is 24%.

EX'Sted BenChmark - CLadder (Jin et al., 2024, proposed CausalCoT)

reasoning
string

Let X = husband; V2 = wife; Y = alarm
clock. X->V2,X->Y,V2->Y E[Y_{X=1, V2=0}
- Y_{X=0, v2=0}] \sum_iv2=v}
P(V2=v|X=0)*[P(Y=1|X=1,V2=v) -
P(Y=1|X=0, V2=v)] P(Y=1 | X=0, V2=0)
0.08 P(Y=1 | X=0, V2=1) = 0.54 P(Y=1
X=1, V2=0) = 0.41 P(Y=1 | X=1, V2=1)
0.86 P(V2=1 | X=0) = 0.74 P(V2=1 | X=1)
= 0.24 0.74 * (0.86 - 0.41) + 0.24 %
(0.54 - 0.08) = 0.32 .32 > 0

https://arxiv.org/abs/2312.04350

question_property formal_form

E[Y_{X=1, V2=0} - Y_{X=0,
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EX'Sted BenCh mark = CEBaB (Abraham et al., 2022)

food ambiance service noise overall

Original text: Excellent lobster and decor, but rude waiter. + + - unk 4
Edit Goal
food: — Terrible lobster, excellent decor, but rude waiter. - + - unk 2
food: unk Excellent decor, but rude waiter. unk + - unk 3
ambiance: — Excellent lobster, but lousy decor and rude waiter. + — - unk 3
ambiance: unk Excellent lobster, but rude waiter. + unk - unk 3
service: + Excellent lobster and decor, and friendly waiter. + + + unk 5
service: unk Excellent lobster and decor. + + unk unk 5
noise: + Excellent lobster, decor, and music, but rude waiter. - + - + 4
noise: — Excellent lobster and decor, but rude waiter, and noisy. + 4 - - 3

/ UCSan Diego
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My Idea Proposal - Issues to Address

« No Causal Parroting
« No Exploiting Language Cues
« Focusing on Interventions & Counterfactuals
 Scaling to Multiple Factors
« Open-Endedness

« Retrieving World Knowledge?

UCSan Diego
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My Idea Proposal - Proposed Contents of the Benchmark

« Fictional Scenario
« Hidden Confounder, Collider, or Mediator
« Open-ended Questions
« Regarding Interventions & Counterfactuals

 Structural Understanding
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My Idea Proposal -

« Alignment
« Quality

« Robustness
« Fairness

o Efficiency

10 https://arxiv.org/abs/2311.04287

Evaluation

Dr. Reid Pryzant (Stanford, Google):

+ Itwould be great if there were a real dataset of paired
observational data + RCT for the same problem using
text as the independent variable so that researchers
can better study the causal effect of text e.g.

adding/removing words.

" UCSan Diego
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My Idea Proposal - After Developing the Benchmark

« CausalCoT uinetal, 2024 in Prompting
« Other Prompt Engineering Techniques
« Active Learning
« Teacher Forcing
« Masked Autoencoder

« Mixture of Experts

UCSan Diego
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Thank you for listening!
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